Matched Pair Antibody Set for Elisa of Human Factor VII antigen (FVII)

Sufficient reagent for 5 x 96 well plates

Catalogue #: FVII-EIA
Lot #: SAMPLE
Expiry date: **/******
Store at -10 to -20°C.

For Research Use Only ~ Not for use in diagnostic procedures.

Description of Factor VII (F.VII)

Factor VII (F.VII, also known as Stable Factor and Proconvertin) is a vitamin K-dependent glycoprotein produced in the liver. Plasma concentration of FVII is normally ~0.5 ug/ml (10 nM) in plasma. A deficiency of F.VII is associated with bleeding in a clinical pattern similar to haemophilia, but is inherited as an autosomal recessive trait. The deficiency can be characterized by a quantitative (low activity and a low antigen) or a qualitative (low activity and normal antigen) defect in F.VII function. In its zymogen form F.VII is a single chain molecule of ~50 kDa. It contains two EGF-like domains and an amino-terminal domain containing 10 y-carboxyglutamic acid (Gla) residues. The Gla residues allow F.VII to bind divalent metal ions and participate in calcium-dependent binding interactions. F.VII and activated F.VII (F.VIIa) bind to tissue factor exposed at the site of vascular injury. F.Ixa, F.Xa or F.VIIa rapidly activate tissue factor-bound F.VII to F.VIIa in the presence of calcium and phospholipid. Thrombin and F.XIIa are able to activate F.VII in the fluid phase in the absence of cofactors. The activation of the single chain zymogen F.VII occurs by proteolysis after residue Arg52, resulting in a two-chain active serine protease consisting of 1 30 kDa heavy chain and a 18 kDa light chain. In complex with tissue factor, phospholipid and calcium, F.VIIa is able to activate F.X and F.XI. Free F.VIIa in plasma is remarkably stable, but the activity of F.VIIa / TF complex is regulated by Tissue Factor Pathway Inhibitor (TFPI) in the presence of F.Xa, and also by Antithrombin (ATIII) in the presence of heparin.

Principle of Sandwich-style ELISA

Affinity purified antibody to F.VII is coated onto the wells of a microtitre plate. Remaining binding sites on the plate are blocked with an excess of bovine albumin. The plates are washed and plasma or other fluids containing F.VII are applied. The coated antibody will capture the F.VII in the sample. After washing the plate to remove unbound material, a peroxidase conjugated second antibody to F.VII is added to the plate to bind to the captured F.VII. After washing the plate to remove unbound conjugated antibody, the peroxidase activity is expressed by incubation with o-phenylenediamine (OPD). After a fixed development time the reaction is quenched with the addition of H2SO4 and the colour produced is quantified using a microplate reader. The colour generated is proportional to the concentration of F.VII present in the sample.

Supplied Materials:

1. Capture Antibody (FVII-EIA-C): One yellow capped vial containing 0.5 ml of purified monoclonal anti-FVII antibody for coating plates.

2. Detecting Antibody (FVII-EIA-D): One red capped vial containing 0.5 ml of peroxidase-conjugated polyclonal anti-F.VII antibody for detection of captured FVII.

Note: Antibodies are supplied in a 50% (v/v) glycerol solution for storage at -10 to -20°C. Keep vials tightly capped. Do not store in frost-free freezers.

Materials Required but not Provided:

1. Coating Buffer: (50 mM Carbonate) 1.59 g of Na2CO3 and 2.93 g of NaHCO3 up to 1 litre. Adjust pH to 9.6. Store at 2-8°C up to 1 month.

2. PBS (base for wash buffer and blocking buffer) 8.0g NaCl and 1.15g Na2HPO4, 0.2 g KH2PO4, 0.2 g KCl up to 1 litre. The pH should be 7.4 if necessary. Store up to 1 month at 2-8°C, discard if there is evidence of microbial growth.

3. Sample Diluent and Wash Buffer: PBS-Tween (0.1% v/v). To 1 litre of PBS add 1.0 ml of Tween-20. Check that pH is 7.4. Store at 2-8°C up to 1 week.

4. Blocking Buffer: PBS-BSA (1%, w/v) Dissolve 2.5 g of Bovine Serum Albumin (Sigma-RIA grade) in 200 ml of PBS. Adjust pH to 7.4, if required, then make up to 250 ml with PBS. Aliquot and store frozen at -20°C.

5. Conjugate Diluent (HBS-BSA-T20): 5.95 g HEPEs (free acid), 1.46 g NaCl, 2.5 g Bovine Serum Albumin (Sigma-RIA grade) dissolved in 200 ml H2O. Add 0.25 ml of Tween-20, check and adjust pH to 7.2 with NaOH, then make to final volume of 250 ml with H2O. Aliquot and store frozen at -20°C.

6. Substrate Buffer (Citrate-Phosphate buffer pH 5.0): 2.6 g Citric acid and 6.9 g Na2HPO4 up to a final volume of 500 ml with purified H2O. Store at 2-8°C up to 1 month.

7. OPD Substrate: (2.5 M H2SO4)

Caution very corrosive! Generates heat on dilution! Where
stock sulphuric acid is 18 Molar, add 13.9 ml to 86 ml H₂O. Store at room temperature.

9. Other:
Microplates, 96-well Immulon 4HBX (http://www.labsystems.fi)
Microplate washer (optional)
Microplate reader;
Optional: VisuLize™ Buffer Pak
Optional: VisuCal™ Antigen Calibrator

Assay procedure:
1. Coating of Plates:
Dilute the capture antibody 1/100 in coating buffer (preferably in a polypropylene tube) and immediately add 100 ul to every well in the plate. Incubate overnight at 2-8°C.

2. Blocking:
Empty contents of plate and add 150 ul of blocking buffer to every well and incubate for 90 minutes @ 22°C. Wash plate X 3 with wash buffer.

3. Samples:
Reference plasma is diluted 1/10 (100%) then serial 1/2s down to 1/320 (3.13%). Sample plasmas are diluted 1/20, 1/40 & 1/80. All dilutions are made in PBS-Tween sample diluent. Apply 100 ul/well and incubate plate at 22°C for 60 minutes. Wash X3 with wash buffer.

4. Detecting Antibody:
Apply the detecting antibody 1/100 in HBS-BSA-T20 conjugate diluent and apply 100 ul to every well. Incubate plate @ 22°C for 60 minutes. Wash X3 with wash buffer.

5. OPD Substrate:
Apply 100 ul of freshly prepared OPD substrate to every well. Allow colour to develop for 10-15 minutes then stop colour reaction with the addition of 50 ul/well of 2.5 M H₂SO₄. The plate can be read at a wavelength of 490 nm.

Calculation of Results
The construction of a proper reference curve is of no less importance than other aspect of the assay. A reference curve should be constructed by plotting the known concentration of standards versus absorbance. This can be done manually using graph paper, or by using curve-fitting computer software. In our experience, the dose response curves of most immunoassays tend to be sigmoid in shape. Although linear regions can be identified within the curve, the best overall fit is often obtained using an algorithm that provides a weighted theoretical model of fit throughout the entire curve, such 4-parameter or 5-parameter logistic curve fit. In general, the simplest model that defines the concentration-response relationship should be used. The back-fit test is a simple and reliable method to determine curve-fitting method is appropriate. In this test, the apparent concentrations for the absorbance values of each standard point are read from the reference curve. The derived values are compared to the assigned values. An appropriate curve fitting method will provide derived values that closely match assigned values throughout the range of the curve, within user-defined limits. The coefficient of determination (R²) is a valuable indicator of the overall fit, but should not be used by itself in the selection of a curve fitting method, as a poor fit in a particular region of the curve may not be evident from this value alone.

In the quality control of this product we have determined that under the conditions described above, a reference curve that is constructed using serial dilutions of normal pooled plasma, will produce a correlation coefficient (R²) of at least 0.980 using a log-log fit, and an R² of at least 0.990 using a 4-parameter logistic curve fit algorithm. However, the performance characteristics of in-house assays developed using this product in other laboratories may vary slightly from ours. Different curve fitting methods may be employed but we recommend that the back-fit test be applied as evidence that the fitting method is appropriate.

Technical Notes:
> This paired antibody product is intended to facilitate the end user in establishing an in-house immunoassay for research purposes only. It must be not be used for diagnostic applications. Assay validation is the responsibility of the end user and should be done according to user defined protocols.

> Reference calibrators should be of the same matrix and anticoagulant as the samples to be tested (example serum or plasma, citrate or EDTA).

> Do not use samples diluted less than 1/4, as falsely high readings may result.

> The optimal colour development time should be determined empirically as the time required to obtain an absorbance of at least 1.000 at 490 nm for the 100% reference point, not to exceed 20 minutes.

> Rheumatoid factor in plasma samples can sometimes interfere in sandwich type ELISAs by binding to the capture and/or detecting antibodies.

> The wells should not be allowed to become dry. Keep plate covered or in a humid chamber during incubations.

> Antibodies are supplied in a 50% glycerol solution and can be centrifuged briefly in a micro-centrifuge to gather residual reagent from the cap and walls of the tube.

References and Reviews
Related Products:

SAFVII-IG Sheep Anti-Human FVII, IgG from antiserum
SAFVII-AP Sheep Anti-Human FVII, affinity purified IgG
SAFVII-HRP Sheep Anti-Human FVII, IgG-peroxidase conj
SAFVII-APFTC Sheep anti-Human FVII, FITC conj APIgG
SAFVII-APBIO Sheep Anti-Human FVII, Biotinylated APIgG
FVII-DP Plasma deficient in FVII, immune depleted

Visit our site (www.enzymeresearch.co.uk) for details.